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During the least 25 years the ep scattering

reactions in the low and Q2 ∼ few GeV 2 energy

regions was studied in the several high precision

experiments [1, 2, 3, 4]. In particular the the elec-

tromagnetic form factors of the proton and the po-

larization observables are under study in many high

precision experiments in Germany (ELSA/Bonn,

GSI/Darmstadt and MAMI/Mainz) and in other

countries (CERN/Switzerland, CLEO/USA,

FNAL/USA, JLAB/USA, SLAC/USA, TRI-

UMF/Canada and KEK/Japan). The interest

in high precision measurements is generated by

drastic differences for the same observables ob-

tained by different experiments and theoretical

models. The newest measurements have generated

the following questions: Are the two photon

exchange corrections, observed in high energy four

momentum transfer, also important at very low

energy momentum transfer? Can the multi-photon

exchange explain the difference between various ex-

traction of the proton electromagnetic vertices and

polarization observables? Indicates the difference

between the proton charge radius obtained in the

electron proton and in the muon proton scattering,

that something is missing in our description of the

hydrogen like atoms and or our understanding in

the electron and muon interaction with the proton?

The theoretical description of the high energy ex-

periments was performed within the two photon ex-

change models. The main uncertainty of the two

photon exchange models [2, 3, 4] arise from the off

shell extension of the γ∗pp vertexes [5] because γ∗pp

vertexes with the off mass shell nucleons depend on

the two or three variables. Therefore there was sug-

gested the additional approximations which allow

to extract the one variable γ∗pp vertexes with the

on mass shell protons. An other uncertainty is gen-

erated by mixing of the quark-parton and interme-

diate hadron (resonance) degrees of freedom which

are important in this energy region.

In order to avoid these principal uncertainties

of the two-photon exchange models we have de-

rived [9] the relativistic field-theoretical Lippmann-

Schwinger type equation Ae′p′,ep = Ve′p′,ep +

Ve′p′,e′′p′′GoAe′′p′′,ep for the electron-proton (ep)

scattering amplitude Ae′p′,ep in the Coulomb and

Lorentz gauges within the usual quantum electro-

dynamic (QED), where Go is the free Green func-

tion of the ep system. The ep scattering poten-

tial Ve′p′,ep consists of the one off mass shell pho-

ton exchange part VOPE and the nonlocal potential

v which contains all other possible contributions.

Unlike to the other field-theoretical equations, both

protons in Ve′p′,ep are on mass shell, i.e. there is

not required the off mass shell nucleon variables for

the input photon-nucleon vertexes. In the present

formulation the standard form of the leading or-

der one photon exchange potential VOPE is gener-

ated by the canonical equal-time anticommutators

Y =< out;p′
N
|
{

ηe(xo,x), ψ+
e (xo,y)

}

|pN; in >=

VOPE + VNL between the electromagnetic field of

the electron ψe and its source ηe in the Heisen-

berg picture. Besides of the leading one photon

exchange term Y produces also the next-to lead-

ing order terms VNL. which are produced by the

static electric (Coulomb) interaction. It is demon-

strated, that the one-photon exchange amplitude

in the Born approximation Ae′p′,ep ' VOPE is the

same in the Coulomb and Lorentz gauges. But

the nonlocal (contact) terms VNL in the Lorentz

gauge is much more complicated as in the Coulomb

gauge. Moreover, we present the transformation of

the potentials VOPE and VNL in the Lorentz gauges

into Coulomb gauge. The protons in the ampli-

tude and in the potential of the presented equa-

tions are on mass shell. Therefore according to

the Haag-Nishijima-Zimmermann treatment of the

bound (cluster) states in the quantum field theory

[10, 11, 12, 13] in the suggested equations the quark-

parton degrees of freedom can only change the input

electromagnetic vertexes.

The polarization effects in the multichannel

proton-proton and proton deuteron scattering are

also subject of the forthcoming experiments in JINR

within the NICA project[6]. We have suggested

the new relativistic three-body equations for the

amplitude of the coupled nucleon − deuteron ⇐⇒
three nucleon (nd ⇐⇒ 3N) reactions [8] based on

the standard field-theoretical S-matrix approach.

These relativistic field theoretical equations are

three-dimensional from the beginning. Conse-

quently they are free of the ambiguities which ap-

pear due to the three dimensional reduction of the

four dimensional Bethe-Salpeter equations. The

solutions of the considered equations satisfy au-

tomatically the unitarity condition. The form of

96



these three-body equations does not depend on the

choice of the model of the Lagrangian and they

are same for the formulations with and without

quark degrees of freedom. The effective potential

of the suggested equations is defined by the ver-

tices with two on-mass shell particles. It is em-

phasized that these vertices can be constructed di-

rectly from the experimental data. The final form

of the equations are compared with the three-body

Faddeev equations. Unlike to these equations, the

suggested three-body equation have the form of the

Lippmann-Schwinger-type equations with the con-

nected potential. Within the suggested approach

the complete set of the three body forces is obtained.

In the modern particle physic the multidimen-

sional formulation of the several modern theories

in the particle physic allow to maintain the general

unification and avoid the troubles of the usual 3D

and 4D theories. In our paper [9] was suggested the

general model which allow to explain doubling of

the particle states with the same quantum numbers

but with the different masses in the framework of

the conformal group of the transformations in the

momentum space. For this aim the 6D and 5D rep-

resentations of the four-dimensional (4D) interacted

fields and the corresponding equations of motion are

studied using equivalence of the conformal transfor-

mations of the four-momentum qµ (q′µ = qµ + hµ,

q′µ = Λν
µqν , q′µ = λqµ and q′µ = −M2qµ/q

2)

and the corresponding rotations on the 6D cone

κAκ
A = 0 (A = µ; 5, 6 ≡ 0, 1, 2, 3; 5, 6), where

qµ = M κµ/(κ5 + κ6) and M is the scale param-

eter. The 4D reduction of the 6D fields on the cone

κAκ
A = 0 is fulfilled by the intermediate 5D pro-

jection into two 5D hyperboloids qµq
µ + q25 = M2

and qµq
µ − q25 = −M2 in order to cover the whole

domains −∞ < qµq
µ < ∞ and q25 ≥ 0. The result-

ing 5D and 4D fields in the coordinate space con-

sist of two parts ϕ1(x, x5), ϕ2(x, x5) and Φ1(x) =

ϕ1(x, x5 = 0), Φ2(x) = ϕ2(x, x5 = 0), where the

Fourier conjugate of ϕ1(x, x5) and ϕ2(x, x5) are de-

fined on the hyperboloids qµq
µ + q25 = M2 and

qµq
µ − q25 = −M2 respectively. Consequently, the

4D reduction of the 6D fields generate two kinds

of the 5D and 4D interacted fields ϕ
±

= ϕ1 ± ϕ2

and ϕ
±

(x, x5 = 0) = Φ
±

(x) = Φ1(x) ± Φ2(x) with

the same quantum numbers but with the different

masses and the sources. This doubling of the 4D

fields Φ
±

= Φ1 ± Φ2 can be applied for unified

description of the interacted fields of the electron

and muon, π and π(1300)-mesons, N and N(1440)-

nucleons and other particles with the same quantum

numbers but different masses and interactions.
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